VASCULAR RETRIEVAL

Rui Anjos

Hospital de Santa Cruz,

Lisbon, Portugal

FOREIGN BODIES IN THE VASCULAR SYSTEM

In most cases iatrogenic!

- Catheters
- Therapeutic devices

Possible complications of foreign bodies

- Vascular or cardiac trauma
- Infection
- Arrythmias
- Thrombosis / ischemia

> Be prepared in advance !

- Retrieval devices should be available
- Long sheaths, with back-bleed valves
- Guide wires (gliding, standard, stiff)
- Deflector wires
- Preferentially biplane fluoroscopy

Embolized materials

Most frequently to systemic veins, right atrium, and pulmonary arteries Also to left atrium, and systemic circulation

Linz, RA 2014

General approach

1. Identify the foreign body

- 2. Define its location
- 3. Plan the procedure !

Planning

In most cases use a long sheath!

- 2 or 3 Fr larger than the original sheath
- Consider Flexor[™], Arrowflex[™], kink resistant sheaths
- 8 Fr for most indwelling catheters and up to 14 Fr for some devices
- Backbleed valve
- Consider bevelling the tip

The Guiding catheter option

- When significant catheter manipulation is predicted
- For large, stiff, bulky foreign bodies

Retrieval device inside a Guiding catheter inside a Large sheath

> A Guiding catheter allows for

Better positioning and control of retrieval device

Extra support to pull the foreign body into the sheath

Prevents "accordioning" / kinking of the sheath

Retrieval devices

- Snares
- Baskets
- Forceps
- Other (needle 's eye, laser sheath)

Snares

- The simplest devices
- Easy to use
- Require a free end / portion of the object
- Essential in every catheterization laboratory
- Excellent for catheters / wires

Home made Snares

- Rigid end hole catheter or a cut balloon
- 0,018" long guide wire
- The 2 ends are inserted through the tip of the catheter or the 2 holes of the cut balloon and looped at the desired diameter
- Always available but deform easily and are difficult to manipulate
- Poor resistance

>Goose Neck™ (EV3)

- Nitinol string wire
- Aligns perpendicular to the catheter
- Loop very flexible, but resistant
- Diameters between 5 and 35 mm
- Sheath 4 Fr to 6 Fr
- Micro snares (3 Fr)

>Andra Snare™ (Andromed)

- Nitinol snare, preangled tip
- Shapable introducer
- Loop size 5-35 mm; introducers 4-6 Fr
- Micro-snares: 2-7mm (3 Fr)

➤ Angled Wire Loop[™] (Cook)

- Similar angle tip
- Loop size 5-35 mm; introducers 5 7 Fr

> Expro / Expro Elite™ (Radius)

- Two loops of wire welded distally
- When opened, the 2 wires have a spiral shape
- 0,035" catheter !
- Sizes 5 to 35 mm
- Excellent for rotational grasp of foreign bodies, specially in small vessels (peripheral pulmonary arteries)
- Fragile!

>Multi-snare[™] (PFM)

- Two perpendicular loops
- Distal loop 90° to the catheter
- Proximal loop parallel to the catheter
- Sizes 5 to 40 mm (sheath 4 Fr to 6 Fr)
- Micro-snares 2- 6 mm
- Good for objects perpendicular and aligned with the vessel, or that are mobile

>En Snare™ (Merit Medical)

- 3 separate interlaced loops of Nitinol with angles of approach
- Allows for good alignement
- Diameters 6 to 45 mm (6 7 Fr)
- Micro En Snare 2 to 8 mm (3 Fr)

> Needle's Eye™ (Cook)

- "Eye" Metal loop bending on itself
- Thread Double strand of metal wire, straight, which enters the "eye"
- Excellent for foreign bodies without a free end
- 12 Fr internal sheath
- Long 16 Fr outer sheath

► Loop Master Snare[™] (Andromed)

- Nitinol snare
- Distal guide wire
- 25 mm loop, 8Fr
- Designed to retrieve foreign bodies without a

free end (catheters, wires, pacemaker leads)

➤ Vascular retrieval Forceps[™] (Cook)

- Distal guide wire
- Size 3 Fr
- Stainless steel "Jaw" excellent for coils, other devices in position perpendicular to the catheter
- Introduced through a small guiding catheter
- Use a sheath according to the size of the foreign body!

> Bioptome Forceps

- 5-7 Fr
- Used to grasp, expose or reorient a foreign body
- Open the bioptome jaws within the tip of the sheath
- Mouth of bioptome has small size
- Designed for cutting and not grasping
- Poor traction force

> Basket retrieval devices • Retrieval basket ™ (Boston Scientific)

- Dotter basket [™] (Cook)
- 3 to 5 strands of metal wire forming a helical basket
- Wires attached proximally and at the tips
- Between 6 and 10 cm length
- Usually larger and stiffer than other devices
- Sheath at least 2-3 Fr larger than the carrier catheter

RETRIEVING A CATHETER FRAGMENT

STEP BY STEP APPROACH:

- Obtain a thorough history and ascertain the type and location of catheter
- Select the retrieving device: single or multiple loop snare.
 - (Usually a 10 to 25 mm loop diameter)
- Select the guiding catheter or sheath to use.
- Obtain informed consent.
- Access the femoral vein percutaneously with a short introducer.
- Heparinize (100 IU/kg iv).
- Advance a diagnostic catheter to the desired location

RETRIEVING A CATHETER FRAGMENT

STEP BY STEP APPROACH:

- -Advance an exchange wire beyond the fragment position and exchange the diagnostic catheter for the selected guiding catheter (or sheath)
- Advance the snare catheter until it exits the guiding catheter or sheath
- Then advance the snare until the loop is around the proximal end of the foreign body
- By advancing the snare catheter the loop of the system is closed
- To retrieve the indwelling catheter, maintain tension and pull the central core and snare catheter, while advancing the guiding catheter or sheath

> VERY IMPORTANT

Remove completely the foreign body into a sheath

before withdrawing it through the heart

> If a foreign body is captured but not retrievable into the sheath

Option 1

- Release device in a secure position
- Replace sheath over the wire
- Use a larger sheath

> If a foreign body is captured but not retrievable into the sheath

Option 2

Baloon dilate the tip of the sheath

Option 3

• Use a second snare or an En snare

Barcelona, RA 2012

Device embolization is the most frequent cause for retrieval in paediatric cardiology !

> Transverse Balloon Rupture

Courtesy Dr Jo de Giovanni

Complications of retrieval procedures

- Air and clot embolism
- Radiation exposure
- Valvular or ventricular device entrapment
- Damage to vascular or cardiac structures
- Arrhythmias

Final remarks

- Embolized? Is the patient going to need surgery anyway? Consider surgical retrieval
- > Before you start capturing, plan the procedure adequately
- > Have the necessary equipment available
- Removal of most intravascular foreign bodies is possible by percutaneous techniques